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Abstract: This study characterizes aerosol optical depth (AOD) over Greater Bangkok (GBK) and nearby regions in Central Thailand 

(CT) using MODIS–Aqua AOD data for a period of 16 years (2003–2018). AOD and PM2.5 show a linear relationship but its strength 

is small to fair, suggesting the contrast between the column–integrated and surface–level quantities. On a monthly scale, both GBK 

and CT show similar patterns for AOD variation (for both average and extreme). AOD in GBK is higher than that in CT due possibly 

to larger anthropogenic emissions. AOD is relatively low in the wet season due to the stronger wind and scavenging effect of rain. AOD 

peaks in March and October. The former peak is attributed to biomass burning for land clearing before wet–season cropping and more 

secondary aerosols induced by warm and humid conditions. The latter peak is due possibly to increased biomass burning in the late 

wet season for land clearing to support dry–season cropping since large irrigated areas are well present within CT. Dry–season AOD 

tends to intensify most and spread over large areas in February–April. Based on spatial correlation analysis, haze management for GBK 

in December and January needs to consider areas outside GBK. During February–April over the recent years, increased AOD in GBK, 

despite decreased biomass burning, is observed and likely to be induced by urbanization and economic growth but increased AOD in 

CT is thought or speculated to be more linked with unfavorable meteorological conditions. The developed multiple linear regression 

model to relate AOD in GBK and meteorology explains 43% of total variability in dry–season AOD. The important input 

meteorological variables remaining in the final regression include persistence, cloud cover, relative humidity, wind speed, and westerly 

wind. Persistence shows positive association with AOD, suggesting haze problems to be multi–day events.   
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1. Introduction

Atmospheric aerosols are solid and liquid particles 

suspended in the air. They are released either by natural processes 

(e.g., volcanic eruption, dust storm, and sea spray) or by anthropogenic 

activities (e.g., fuel combustion, biomass burning, agricultural 

activities, transportation, and industrial processes) [1]. Effects of 

atmospheric aerosols on human health have been well reported 

[2-4]. Aerosols can affect surface energy balance in multiple 

ways. For direct effects, they scatter and absorb sunlight, resulting 

in reduced solar radiation reaching the surface. Through indirect 

effects, being more complex than the direct effects, aerosols can 

act as cloud condensation nuclei (CCN) and alter cloud optical 

properties, cloud droplet size, and population, in turn affecting 

precipitation and water cycles [1]. How aerosols affect weather 

and climate, as well as its uncertainty, has been commonly known 

as an important scientific subject. Aerosol optical depth (AOD) is 

a physical property of aerosols, which is defined as the total light 

extinction in the vertical column due to the scattering and 

absorption of light over the unit cross–sectional area and can thus 

be related to particulate matter as an essential air pollutant. It is 

measured using a ground–based sun‒photometer (either fixed or 

portable) or derived from satellite data [5-7]. During a recent 

couple of decades, satellite AOD has been monitored and 

intensively used for studying aerosols at various spatiotemporal 

scales and long–term trends [8-12], and understanding aerosol types 

in a region [13-14]. Satellite AOD can also be used to estimate 

surface particulate matter, especially particles smaller than or 

equal to 2.5 µm and 10 µm in size (shortly, PM2.5 and PM10, 

respectively), but their relationship may not be straightforward 

and can be complicated by many factors [15-16]. Surface PM2.5 

estimation using satellite AOD has been widely studied by means 

of statistical models with meteorology, land cover, and socio–

economic factors as input [17-20]. 

Bangkok, the capital of Thailand, and its five neighboring 

provinces (Nakhon Pathom, Nonthaburi, Pathumthani, Samut Prakan, 

and Samut Sakhon), collectively known as Greater Bangkok (GBK) 

(Figure 1), represent the largest urban agglomeration in Thailand 

and also one of the largest in Southeast Asia. Its continuous 

growth and urbanization have negatively affected environmental 

conditions, including air quality [21]. The degradation of air 

quality was typical of concern in the dry season when weather 

conditions tend to be favorable to air pollutants to elevate. For 

PM2.5, its levels have exceeded the daily (i.e., 24–h average) 

national ambient air quality standard (NAAQS) of 50 µg m–3 

multiple times annually [21].  

A limited number of AOD studies have still been conducted 

in Thailand as compared to PM and ozone pollution studies. For 

example, Janjai et al. (2009) [5] and Janjai et al. (2012) [6] reported 

higher AOD during summer (March–April) based on their 

investigation of daily and seasonal AOD variations at multiple 

sites. Bridhikitti (2013) [22] examined atmospheric aerosol layers 

over Greater Bangkok using satellite AOD and attributed elevated 

dry–season haze to long–range transport of air pollutants. Kanabkaew 
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et al. (2013) [23] used MODIS (Moderate Resolution Imaging 

Spectroradiometer) AOD data and surface meteorological data to 

predict hourly PM2.5 in Chiang Mai, the largest city (in terms of 

population and economy) in the northern region. Zeeshan and Kim 

Oanh (2014) [24] suggested the dependence of PM10 and AOD 

correlation on synoptic patterns and mixing height. Sukitpaneenit 

and Kim Oanh (2014) [25] reported a moderate–to–good correlation 

between satellite AOD and CO with surface PM10 and CO, 

respectively,  in the dry season for Chiang Mai.   

Here, the latest MODIS Collection 6.1 (C6.1) aerosol product 

from the Aqua satellite of the NASA (National Aeronautics and 

Space Administration) was used to investigate AOD characteristics 

for GBK and also the central region or Central Thailand (CT), 

including spatiotemporal variation, spatial coherency, epochal AOD 

comparison, and statistical relationship with meteorological variables. 

To our knowledge, this long‒term assessment of satellite AOD will 

complement the existing knowledge and understanding of 

atmospheric aerosols for GBK.  

2. Study Area

As mentioned previously, GBK is the focused area for the 

current assessment. Its gross provincial product (GPP) (defined 

as the national gross domestic product or GDP but scaled to a 

provincial level) [26], energy consumption [27], and population 

[28] apparently show growth over the last two decades (Figures

2a–c). Urbanization has continuously increased, with a faster rate

seen in GBK than in Bangkok (Figure 2d). To facilitate the

assessment, three grids were defined, namely CT, GBK, and

urban core (UC) grid (based on the spatial resolution of the

MODIS–Aqua AOD data, see below) (Figures 3a 3b).

The general climate in GBK or CT follows that of the 

upper part of Thailand, which is tropical and humid. It is mainly 

regulated by the two prevailing monsoons: northeast (November–

February) and southwest (May–October) [29]. The former monsoon 

brings cool dry air (i.e, the winter). The latter monsoon brings 

moist air from the Indian Ocean and the Gulf of Thailand, causing 

abundant rain (i.e., the wet or rainy season). The transitional 

period of March–April has the warmest condition (i.e., the summer). 

The dry season, referred herein, constitutes the winter and summer 

seasons. It is noted that the dry season has an important synoptic 

feature called cold surge, which is characterized by abrupt moderate–

to–strong winds with cool dry air from the mid–latitudes 

southward or southwestward to the Indochina Peninsula [30].

a) b) 

 c) 

Figure 1. a) Thailand, b) PCD stations and sun‒photometer site, c) Greater Bangkok and its provinces. The grey shading indicates 

built–up areas. 
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a) b) 

c) d) 

Figure 2. a) Gross Provincial Product (GPP) (at current market price) b) energy consumption (in units of 104 ktoe and 1ktoe = 41,868 

× 109 J), c) registered population, and d) total urban area (%). The acronyms TH, GBK, and BKK stand for Thailand, Greater Bangkok, 

and Bangkok, respectively. 

a) b) 

c) d) 

Figure 3. a) Grids considered in this study (black: full domain, green: CT, blue: GBK, and red: UC), b) GBK grid with the red grid cells 

(shortly, pixels) corresponding to UC, c) CFS grid with the blue pixels corresponding to GBK, and d) total urban area (%) versus the 

size of a UC‒centered box in units of land‒cover (ESA CCI) pixels. Here, a box of 31×31 pixels is shown to properly represent UC.  

3. Data

The MODIS sensors on board of the Terra and Aqua 

satellites, both combined, pass and cover the entire Earth every 1 

to 2 days, and they acquire data in 36 spectral channels at multiple 

spatial resolutions (250 m, 500 m, and 1000 m) [7]. Two global 

AOD products at 3‒km and 10‒km resolutions are produced by 

the MODIS Adaptive Processing (MODAPS) with Dark Target 

(DT) algorithm to estimate AOD at the 3–km resolution and with 

both Dark Target (DT) and Deep Blue (DB) algorithms for the 

10–km resolution [7]. The latest MODIS–Aqua Collection 6.1 

(C6.1) Level–2 AOD 3–km product (MYD04_3K) from the DT 

algorithm (available at https://ladsweb.nascom.nasa.gov/) was 

adopted for use here but only for daytime overpasses. A total of 
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16 seasonal years (2003–2018) were considered. For example, the 

seasonal year 2003 is defined as starting in November 2002 and 

ending in October 2003, with the dry season covering November 

2002 to April 2003 and the wet season covering the remaining months. 

Moreover, two epochs were defined and used for comparison 

between the past and recent periods, which are EP1 (2003–2010) 

and EP2 (2011–2018). The most interested variable extracted is 

“Optical Depth Land and Ocean” (at 0.55 μm), already filtered 

for quality assurance and ready for use [7]. The Level–2 MODIS 

data are swath‒based. Thus, they were re–gridded using HDFLOOK 

software (available at http://loawww.univ‒lille1.fr/SOFTWARE/ 

Hdflook) to a regular latitude–longitude grid. In our data processing, 

if any pixel reports valid values from different swath files on the 

same day along the same daytime overpass, averaging is applied. 

Because the downloaded data have been quality‒filtered (including 

cloud contamination), large percentages of missing data were 

found (more in the wet season). For statistical calculation in this 

study, monthly AOD at a particular pixel was computed (e.g., 

pixel–wise average and 95th percentile) using valid daily AOD 

values (at least 5% required) at the pixel in a particular month. 

Average AOD over an area was computed using valid values 

found from all pixels in the area (at least 50% required).  

A set of ground–based AOD set, measured by a portable 

sun‒photometer (SP), was obtained from Aman (2019) [31] in 

order to compare with the MODIS AOD data. The measurement 

site is at the rooftop (44 m agl) of a building at the King Mongkut 

of Technology North Bangkok (KMUTBN) (Figure 1b and Table 1). 

The dataset covers hourly daytime AOD values during January‒

March of 2014 and 2015. The portable SP has five spectral 

channels (440 nm, 500 nm, 675 nm, 870 nm, and 936 nm). The 

instrument was placed onto a tripod for handling security. Since 

clouds directly affect AOD observation, any cloudy days were 

removed. The technical details of the AOD measurement are 

referred to Aman (2019) [31]. Since the wavelength pertaining to 

MODIS AOD reported is 550 nm, the following equation was 

employed to adjust SP AOD at 500 nm to 550 nm:  

𝜏550 = 𝜏500 × ( 
0.55

0.5
)−𝛼  ,

(1) 

In equation 1, τ500 and τ550 are the AOD values at 500 nm 

and 550 nm, respectively, α is the Angstrom exponent calculated 

using a linear fit to the logarithmic form of the following 

Angstrom formula: 

𝜏𝜆 =  𝛽𝜆−𝛼  , (2) 

In equation 2, τλ is the AOD value at wavelength λ, α is 

the Angstrom exponent, and β is the turbidity coefficient.  

Hourly surface PM2.5 data were requested and obtained 

from the Pollution Control Department (PCD) for six air quality 

monitoring stations located in the study area (Figure 1b and Table 

1) for comparison with the AOD data. These stations have good

adequacy of reported data. It is noted that air‒quality data

collected at stations are internally quality‒inspected by the PCD

before public release. Typically, at a PCD station, an air sampler

is placed at an approximate height of 3 m agl and PM2.5 is

continuously detected using beta gauge attenuation (Figure S1 in

Supplementary Materials). It is noted that, after the temporal and

spatial colocation of the PM2.5 data with the satellite AOD data,

only three stations were chosen for use (P24, P52, and P54)

because the other stations gave relatively low pairings.

Meteorological data used were extracted from 0.5°−resolution 

hourly Climate Forecast System (CFS) reanalysis data [33, 34], 

which include air temperature (T), precipitation (PP), planetary 

boundary layer height (PBLH), cloud cover (CC), relative humidity 

(RH), and wind (at 10 m agl and 925 mb). Only the data from 13 

LT and 15 LT were used, corresponding to the overpass times of 

the Aqua satellite during the daytime above CT (12.67−14.67 LT 

with a mean of 13.63 LT) (Figure S2 in Supplementary 

Materials). The pressure level of 925 mb is equivalent to about 

760 m msl, approximately the middle of the PBL in the tropics. It 

is noted that 925–mb wind was mainly used because it represents 

wind for the bulk PBL than 10–m wind, which is suitable for 

column‒integrated AOD. To examine how biomass burning (forest 

and agricultural fires affect AOD, daily 1–km active fires detected 

by MODIS [35] were used, here MCD14ML Collection 6 that 

combines fires detected by MODIS on the Terra and Aqua satellites, 

(available at https://firms.modaps.eosdis.nasa.gov/download/). 

For the land cover, satellite–derived yearly land cover data from 

the European Space Agency Climate Change Initiative (ESA CCI) 

were used (available at  http://www.esa‒landcover‒cci.org/). The 

dataset has a 300–m resolution and 22 land cover classes, based on 

the classification of the Food and Agriculture Organization (FAO).  

A number of grids (full domain, CT, GBK, and UC) were 

specified in support of the assessment. Their grid resolutions (i.e., 

pixel sizes) correspond to those of data (here, MODIS AOD and 

CFS) overlaid upon. The UC grid represents the urban core of 

GBK, for which urbanized (i.e., built–up) areas are dominant. It 

was defined as follows: A location (13.75° Lat. and 100.56° Lon.) 

is marked as the city center. Next, the percentage of total 

urbanized areas found in the land‒cover (ESA CCI) data is 

computed within a box with varying size (number of 300‒m 

pixels per size = 1, 3, 5, 7, 9, …, and so on sequentially) and 

plotted (Figure 3d). As seen, a sharp decrease in total urbanized 

areas is first encountered at the box size of 31×31 pixels, which 

is sufficient to designate it as UC. The box size is approximately 

equivalent to 9×9 km2 and 3×3 MODIS AOD pixels. From the 

plot, the UC grid does not change with the year (e.g., 2005 and 

2015) and is reasonably valid for use over the full period considered.

Table 1.  Surface PM2.5 and sun‒photometer stations. 

Station Source 
Name 

(Province) 
Lat. (deg.) 

Lon. 

(deg.) 
Period Background 

24 (used) PCD Na Phra Lan (Saraburi) 14.68634 100.87172 2013‒2018 General 

27 PCD Samut Sakhon Wittayalai school 

(Samut Sakhon) 

13.55035 100.26473 2013‒2018 General 

50 PCD Chulalongkorn Hospital (Bangkok) 13.72983 100.53649 2017‒2018 Roadside 

52 (used) PCD Electricity Sub‒Station Thonburi (Bangkok) 13.72747 100.53649 2016‒2018 Roadside 

54 (used) PCD Community Housing Authority Din Daeng 

(Bangkok) 

13.7625 100.53649 2011‒2018 Roadside 

59 PCD Public Relations Department (Bangkok) 13.7833 100.54041 2015‒2018 General 

SP Aman (2019) KMUTNB (Bangkok) 13.8194 100.5147 2014‒2015 Rooftop 

(44 m agl) 

Remark: 

PCD: Pollution Control Department 

SP: Portable sun‒photometer 

https://firms.modaps.eosdis.nasa.gov/download/
http://www.esa-landcover-cci.org/
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Table 2.  List of the data used in the study. 

Variables 
Sources/ 

Developers 
Resolution Frequency Period 

MODIS AOD LAADS (NASA) 0.027˚ (~3 km) 
Daily 

(afternoon) 
2002‒2018 

Land cover (22 classes) ESA CCI 0.00277˚ (~0.3 km) Yearly 2002‒2018 

Air temperature (K) 

Cloud cover (%) 

Planetary Boundary Layer 

Height (m) 

Precipitation (mm s‒1) 

Relative Humidity (%) 

10‒m wind (m s‒1) 

925‒mb wind (m s‒1) 

CFS, 

NCEP/NOAA 
0.5˚ Hourly  2002‒2018 

Remark: 

LAADS: Level‒1 and Atmosphere Archive and Distribution System 

NASA: National Aeronautics and Space Administration 

ESA CCI: European Space Agency Climate Change Initiative  

CFS: Climate Forecast System Reanalysis (CSFR till Mar. 2011, and CFSv2 since Apr. 2011) 

NCEP/NOAA: National Centers for Environmental Prediction/National Oceanic and Atmospheric Administration, US 

4. Results and Discussions

4.1 AOD and PM2.5 Comparison 

In comparison between MODIS AOD and SP AOD, 

pixel‒point colocation is necessary. To sustain the number of 

samples, temporal and spatial colocation has been done 

differently in previous studies. Nichol and Bilal (2016) [36] used 

an average AOD between 12 LT and 14 LT for 3×3 pixels centered 

over a ground–based site. Likewise, Bilal et al. (2019) [37] used 

the same spatial colocation but only times within one hour of the 

satellite overpass. Gupta et al. (2018) [38] used average AOD over 

0.15°×0.15° within half an hour of the satellite overpass. Since 

the mean of Aqua satellite overpass during the daytime over CT 

is 13.63 LT. Thus, SP AOD observed at 14 LT was used.  

For the spatial colocation, like Gupta et al. (2018) [38], 

average AOD within 0.15°×0.15° centered at the measurement 

site was used, and a total 46 days were available for comparison 

(Figure 4a). The correlation between MODIS AOD and SP AOD 

is shown to be reasonably high (0.84) with the majority of their 

data pairs falling within the factor‒of‒two envelope, suggesting 

the applicability of MODIS AOD. Comparing between MODIS 

AOD and PM2.5 at the chosen three stations, a positive correlation 

is small to fair (0.25−0.33) (Figures 4b−d). Since PM2.5 is 

measured near the surface while AOD is a column‒integrated 

quantity, their relationship is not necessarily linear and is 

influenced by many factors [15-16]. Aman (2019) [31] also 

reported the influence of relative humidity and wind on the 

relationship of PM10 and AOD for Bangkok. 

4.2 Temporal and spatial variation 

The monthly variation of average AOD appears to be 

similar for both GBK and CT and also in both epochs (EP1 and 

EP2) (Figure 5), with higher values found in GBK. AOD is 

generally relatively high in the dry season, compared to the wet 

season, with two peaks (the higher one in March and the lower 

one in October). Extreme (here, 95th percentile) AOD also 

displays a similar pattern to average AOD, i.e., higher values seen 

in GBK. These suggest intense human activities in GBK that lead 

to strong anthropogenic emissions. The March peak is attributed 

to biomass burning being the most intensified in March, 

corresponding to the typical time of land preparation for the next 

cycle of cropping or to start in the beginning of the wet season 

(see Figure S3 in Supplementary Materials) [39]. Another 

possible factor is the increased secondary aerosols due to warmer 

and also more humid conditions during the summer (Figure S4a 

in Supplementary Materials). Relatively low AOD in the wet 

season is generally caused by stronger wind (i.e., better 

atmospheric ventilation) and scavenging rain (Figure S4 in 

Supplementary Materials). A similar monthly variation of AOD in 

GBK has been reported by previous studies [5-6]. The October 

peak of AOD is quite interesting despite well−present rain and 

somewhat limited fire hotspots observed (Figures S3 and S4 in 

Supplementary Materials). Although no clear explanation is given 

here, its possible reasons include increased agricultural burning to 

get rid of crop residues for off–season cropping starting in the 

early dry season [40]. This practice is relevant to irrigated land 

which is abundantly present in CT.

Figure 4. a) Comparison of SP AOD and MODIS AOD at 550 nm, and b‒d) comparison between MODIS AOD and PM2.5 in the dry 

season at the chosen three PCD stations. In each plot, the solid line is the linear fit.  The middle dashed line is of the 1:1 slope. In a), 

the top and bottom dashed lines are the factor‒of‒two lines. 

a) b) c) d)
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a) 

b) 

Figure 5. a) Monthly mean land AOD and b) monthly high‒end 

(95th percentile) AOD over CT and GBK. EP1 and EP2 are the 

first and second half‒periods of 2003‒2018. 

Monthly AOD over the full domain was also mapped 

(Figure 6). A contrast in intensity and distribution between the 

first half of the dry season (November to January) and the second 

half (February to April) is apparent. That is, the first half has a 

lesser degree but AOD becomes considerably intensified in the 

second half, as in the above‒discussed results in Figure 5. The two 

peaks are also exhibited in the March and October maps. It is 

noted that the maps in the wet−season months have more missing 

pixels shown since valid data are less available in the data product 

because of cloud screening. But such burning is not readily 

detected by optical satellite sensors due to cloud obstruction, which 

is likely our current case of MODIS fire hotspots in October. 

Nevertheless, Junpen et al. [40] alternatively used a MODIS burnt–

area product and also found substantial burning in this month. 

4.3 Spatial coherency 

To determine how dry‒season AOD in the city center (i.e., 

UC) is spatially coupled with that in its vicinity, a correlation between 

their daily AOD was computed (Figure 7). This information is useful 

in that it helps suggest whether haze management should be limited 

to just the GBK, given that the AOD condition is not static but 

changes with month. It is seen from the figure that correlation 

decreases with distance from UC. However, when examining closely 

to areas with significantly high correlation (>0.75), we found that 

such areas is mostly constrained within GBK in every month, 

except December and January when the high correlation is seen 

outside GBK to the north and to the southeast. These results 

indicate haze in GBK in these two months may not be possible to 

manage within GBK but needs to extend to its surroundings as 

one larger coherent domain. Northeasterly 925‒mb wind observed 

during these two months could effectively transport aerosols from 

biomass burning outside GBK to the north (Figures 7 and Figure 

S5 in Supplementary Materials). Although wind direction in 

January does not show a direct link AOD between GBK and 

Eastern Thailand, other factors may influence their linkage or 

association, e.g., horizontal turbulent dispersion and secondary 

aerosol formation. In the other dry‒season months, haze tends to 

be GBK‒constrained, and its mitigation may emphasize emissions 

within GBK. A similar study by Kumar et al. (2013) [9] identified 

a homogeneous region of aerosols within a certain radial distance 

using spatial correlation and found such a region to be 

asymmetrical and skewed toward coastal areas. 

4.4 Epochal comparison 

Monthly AOD and its differences between EP1 and EP2 

were quantified for GBK (Figure 8). Although AOD varies with 

year and month, it tends to be relatively high in the second half of 

the dry season (February−April). The years 2011 and 2016 have 

the most intensified levels.  

Comparing the two epochs, it is evident that AOD worsens 

over the recent years (i.e., EP2). CT does not have substantial 

increases in biomass burning (in terms of fire hotspots) in the dry 

season between the two epochs (Figure S3 in Supplemental 

Materials). Specifically, biomass burning decreases in almost all 

of the dry‒season months (5 out of 6), with only April having an 

increase by 27%. The AOD increase found in GBK is thus attributed 

mainly to its urbanization and economic growth, consistent with 

the data in Figure 2. Nevertheless, the spatial examination of AOD 

over the CT reveals that AOD turns out to aggravate in February− 
April over most parts of CT (i.e., not limited to just GBK) (Figure 

9). Since most of CT is vegetative (e.g., agricultural and forest) and 

not urbanized but still has the AOD increase, it is argued or 

speculated that meteorology could play an important role. 

However, this argument is based on our general point of view, 

comprehensive investigation with year‒to‒year meteorological 

variation is required to address the issue adequately. 

Table 3. Regression results of dry‒season AOD in GBK. 

AODdry = 0.477 + 0.465 PER + 5.6210−4 CC ‒ 410−3 RH ‒ 410−3 WS ‒ 0.207 WD(W) 

Coefficients (corresponding p‒values): 

Intercept (< 0.001), PER (< 0.001), CC (< 0.1), RH (< 0.01), WS (< 0.01), and WD (W) (< 0.05) 

R2 = 0.428 

(N = 330) 

Remark: 

a) The final variables in the regression are shown above. The non–bold and bold letters mark statistical significance at 0.1

and 0.05 levels, respectively.

b) N is the number of days used in the regression.

c) PER is the persistence (here, previous‒day AOD).

d) WS and WD are of the vector‒average (over 13‒15 LT) 925‒mb wind speed and direction, respectively.

e) All variables are numeric and continuous, except for WD treated as categorical (N, NE, E, SE, S, SW, W, and NW).

Among all these directions, only WD(W) is the wind direction found to be statistically significant, and its total effect on

AOD simply equals its coefficient whenever wind is westerly (blowing from the west) (otherwise, zero). Given the

negative coefficient, the westerly wind tends to reduce AOD.
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a) Jan. b) Feb. c) Mar.

d) Apr. e) May f) Jun.

g) Jul. h) Aug. i) Sep.

j) Oct. k) Nov. l) Dec.

Figure 6. Monthly mean AOD over 2003‒2018 (as seasonal years). Missing pixels are marked by white pixels. 
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a) Nov. b) Dec. c) Jan.

d) Feb. e) Mar. f) Apr.

Figure 7. Monthly dry‒season correlation between AOD at each individual pixel and that at UC. The wind vectors are at 925 mb. 

Figure 8. AOD over GBK by seasonal year and month. 
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EP1 EP2 EP2 ‒ EP1 

Dry 

Nov. 

Dec. 

Jan. 

Feb. 

Mar. 

Apr. 

Figure 9. Dry‒season AOD in EP1 and EP2 and difference (EP2 − EP1). 

4.5 Meteorological effects 

To understand the effects of meteorology on dry‒season 

AOD in GBK on a daily basis, the statistical relationship of AOD 

with a set of selected meteorological variables using multiple 

linear regression (MLR) was formulated. The MLR is a widely 

used simple method in both doing so and air pollution forecasting 

[41-44]. For example, Tan et al. (2016) [43] used the technique 

to predict AOD for Penang Island Malaysia. Jiang et al. (2018) 

[44] identified factors affecting AOD in Jiangsu China, some of

which include socio–economic indicators. The method involves
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a linear relationship between response (predicted) and explanatory 

(or predictor) variables. Here, a set of eight daily predictors was 

initially selected, including cloud cover (CC), planetary boundary 

layer height (PBLH), relative humidity (RH), temperature (TEMP), 

wind speed (WS), wind direction (WD), fire hotspot count, and 

persistence (PER). WD is categorical as eight sectors as follows: 

northerly (N), northeasterly (NE), easterly (E), southeasterly (SE), 

southerly (S), southwesterly (SW), westerly (W), and northwesterly 

(NW). PER was incorporated to reflect the effect of the previous 

(i.e., background) condition, here previous‒day. Stepwise backward 

elimination, as in Aman et al. (2019) [45], was employed to obtain 

the final (as parsimonious and optimal) MLR model (Table 3), 

whose residual diagnostics (here, independent error, normality of 

error, homoscedasticity of error, and outlier leverage) were found 

to be fairly acceptable. The MLR was implemented using the 

built–in “lm” function of the R software [46]. 

The final model captures 42.8 % of the total variability in 

the original AOD data using the following five variables (PER, 

CC, RH, WS, and WD(W)). The presence of PER in the final 

model with a positive association with AOD highlights that haze 

pollution in GBK tends to be multiple–day episodic, as opposed 

to single–day events. CC has a positive association while RH and 

WS have a negative association. More clouds indicate more 

chance of rain but the dry season has limited rain anyway. Thus, 

more clouds may as well lead to reduced global radiation, more 

near–surface atmospheric stability, less mixing or dilution of 

airborne constituents, and then more accumulate of aerosols. 

Moreover, as a positive feedback, aerosols can act as cloud 

condensation nuclei (CNN), and more aerosols yield more clouds 

if humidity is present enough. Humidity in GBK is typically 

associated with rain and moisture–laden wind from the Gulf of 

Thailand, helping scavenging aerosols. However, humidity is 

well known to enhance or promote the secondary aerosol 

formation, which is not possible to explicitly account for by the 

current MLR model. It is straightforward that stronger wind 

ventilates the atmosphere more efficiently, as opposed to stagnant 

conditions. For wind direction, only westerly wind is maintained 

with a negative association.  

It is noted that the developed statistical model explains 

about 43% of AOD variance and the remaining variance is still not 

captured. Further model improvement possibly requires additional 

input variables that potentially influence AOD. For example, 

meteorological variables are upper–air wind, mixing height, 

synoptic pattern, local recirculation, and air–mass pathway. Certain 

socio–economic variables may also be considered, e.g., population, 

energy usage, and land cover.     

5.Conclusions

In this study, aerosol characterization over Greater 

Bangkok (GBK) and nearby regions in Central Thailand (CT) 

was carried out using the latest MODIS Aqua Collection 6.1 

(C6.1) Level‒2 AOD (aerosol optical depth) data for the years 

2003‒2018. Although AOD and PM2.5 show a linear relationship, 

its strength is small to fair, suggesting intrinsic limitation or 

contrast between the column–integrated and surface–level quantities. 

On a monthly scale, both GBK and CT show similar patterns for 

AOD variation (for both average and extreme). AOD in GBK is 

higher than that in CT due generally to larger anthropogenic 

emissions. AOD becomes relatively low in the wet season due to 

the stronger wind and scavenging effect of rain. The double peaks 

in AOD in March and October are observed. The former peak is 

attributed to biomass burning for land clearing before wet–season 

cropping and more secondary aerosols induced by warm and 

humid conditions. The latter peak due possibly to increases 

biomass burning in the late wet-season to prepare land for dry–

season cropping since large irrigated areas are well present within 

CT.  In the dry season, AOD tends to intensify most and spread 

over large areas in February–April. The spatial correlation 

analysis indicates that haze management for GBK in December 

and January needs to consider areas outside GBK. During 

February–April over the recent years, increased AOD in GBK, 

despite decreased biomass burning for most of the months, is 

observed and likely to be induced by urbanization and economic 

growth but increased AOD in CT is speculated or thought to be 

more linked with unfavorable meteorological conditions (subject 

to further investigation). The developed multiple linear 

regression model explains 43% of total variability in dry–season 

AOD in GBK with five meteorological variables, including 

persistence, cloud cover, relative humidity, wind speed, and 

westerly wind. Persistence shows positive association with AOD, 

suggesting haze problems to be multi–day events. Cloud cover 

reduces global radiation to the surface, increases low–level 

atmospheric stability, and in turn promote the accumulation of 

pollutants. Relative humidity is more likely to link to rain and its 

scavenging effect. Stronger winds offer better atmospheric 

ventilations. Among all wind directions, only the westerly winds 

are significantly shown to alleviate the pollution in the study area. 

The present study acknowledges a number of technical 

limitations. Although satellite AOD is useful, it suffers from a 

relatively high amount of missing data. AOD is a column‒

integrated quantity and then does not represent surface particulate 

pollution directly, which is more relevant in the context of air 

pollution and its impact on public health. The source of regional 

meteorological data considered is reanalysis data whose 

relatively coarse resolution may not suit urban‒scale studies such 

as this study. Future work can extend to resolve the mentioned 

limitations and also the following aspects: use of different 

satellite AOD products for uncertainty analysis or data merging, 

consideration of satellite–based aerosol types, a sophisticated 

statistical relationship of satellite AOD relationship with PM2.5

together with additional input variables, back‒trajectory analysis 

of potential long–range transport [47], and numerical urban‒scale 

modeling [48].  
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